Gestion des stocks

Professeur: JAMAL ELBAZ

Année universitaire 2019-2020

Plan de séance

- 1-Objectifs de gestion de stock
- 2-Méthodes de gestion des stocks...

Objectifs de la gestion du stock

Le stock est toute quantité de marchandises ou de produits gardée en réserve pour une utilisation ultérieure.

La gestion du stock vise:

- Le suivi (physique et comptable)
- Répondre à la demande...

Les enjeux des stocks

Stocker plus qu'il ne faut

- Génère de nombreux coûts;
- Immobilise les capitaux;
- Obsolescence des produits stockés.

Stocker moins qu'il ne faut

Arrêt de la production

- Retards dans les livraisons
 - Perte de clients

Outils de gestion de stock

- Indice de **rotation** des stocks,
- Coût moyen unitaire pondéré (CMUP)
- Modèle de Wilson...

Indicateur de gestion de stock

- Indice de rotation des stocks:

La rotation de stock correspond à la fréquence moyenne de renouvellement du stock au cours d'une période donnée...

Indice de rotation

- IR = Consommations / Stock moyen
- Stock moyen= (Stock début+Stock fin)/2
- Durée moyenne de stockage: nombre de jours/IR

Exemple (1)

- Un supermarché a vendu 30.000 Dhs d'un produit A durant le mois de Novembre. Le stock au début du mois était d'une valeur de 20.000 Dhs, à la fin de Novembre il atteint 22.000 Dhs,
- 1. Calculez l'IR du produit A.
- 2. Quelle est la durée moyenne de stockage?

Exemple (2)

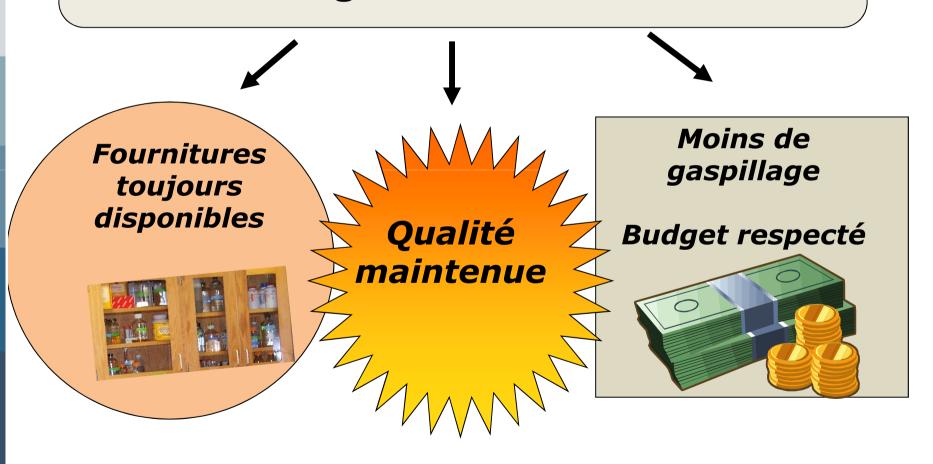
- Un supermarché a vendu 1.200.000 unités d'un produit A durant le mois de Janvier. Le stock au début du mois de Janvier était d'un volume de 110.000 unités, à la fin de janvier il atteint 100.000 unités,
- 1. Calculez l'IR du produit A.
- 2. Quelle est la durée moyenne de stockage?

Méthodes de valorisation

CUMP: Coût Unitaire Moyen Pondéré

 → À chaque mouvement en stock le
 CUMP est calculé en divisant la nouvelle
 valeur du stock par la quantité totale...

Dates	Entrées	PU entrées	Sorties	PU Sorties	CUMP	Valeur du stock
1/2	20	2€			2€	20x2€=40€
4/2			12	2€	2€	40€-(12x2€) =16€
7/2	20	3,4€			((8x2€)+ (20x3,4€)) /28=3€	28x3€=84€


Dates	Mouvement	Quantité	Prix unitaire	Montant
01/01	Stock initial	2	100	200
05/01	Entrée	10	102	1020
10/01	Entrée	10	90	900
12/01	Sortie	5	?	?
15/01	Sortie	10	?	?
20/01	Entrée	20	101	2020
22/01	Sortie	8	?	?

Utilisez le CUMP pour évaluer le prix et le montant des sorties pour cet article

Solution

Dates	Mouvement	Q	PU	Montan t	Stock total	Valeur stock	CUMP
01/01	Stock initial	2	100	200	2	200	(200/2)= 100
05/01	Entrée	10	102	1020	(2+10)= 12	(200+1020)= 1220	(1220/12)= 101,66
10/01	Entrée	10	90	900	(12+10)= 22	(1220+900)= 2120	(2120/22)= 96,36
12/01	Sortie	5	96,36	481,8	(22-5)= 17	(2120- 481,8)= 1638,2	96,36
15/01	Sortie	10	96,36	963,6	(17-10)= 7	(1638,2- 963,6)= 674,6	96,36
20/01	Entrée	20	101	2020	(7+20)= 27	(674,6+2020)= 2694,6	(2694,6 : 27) = 99,8
22/01	Sortie	8	99,8	798,4	<i>(27-8)= 19</i>	(2694,6- 798,4)= 1896,2	99,8

Bénéfices d'un programme de gestion de stock

Modèles de gestion des stocks

Modèle de Wilson (lot économique)

- –Quand commander ?
- -Combien commander?

Le lot économique simple

Hypothèses:

- Un seul produit
- La demande annuelle est connue;
- Délai de livraison nul;
- Chaque commande est livrée une seule fois...

La formule de Wilson

C Prix d'achat unitaire des marchandises

D Demande totale annuelle

S Coût de passation d'une commande

H Coût de stockage(entreposage)unitaire

Q Quantité à commander

QEC Quantité économique à commander

La formule de Wilson

 $Coût \ total \ d'achat \ (non \ pertinent)$ $CT(Q) = S \times \frac{D}{Q} + H \times \frac{Q}{2} + D \times C \quad \Rightarrow \quad Q^* = \sqrt{\frac{2DS}{H}}$ $Coût \ de \ commande$ $Coût \ d'entreposage$

•Dans une usine on s'approvisionne en batteries au prix unitaire de 14\$ et le coût d'une commande est de 11\$. On achète 12000 unités/an selon un taux constant. Le coût de stockage annuel est estimé à 24% du prix unitaire de l'article. On demande de calculer :

-La QÉC.

- -La quantité moyenne en stock.
- -Temps écoulé entre deux commandes.
- –Le coût pertinent total.

Solution

- QÉC= 280,3 unités donc 280 unités.
- Stock moyen = 140 unités.
- Temps entre deux commandes = 8,4 jours
- Coût pertinent total = 941,83\$

- Un fabricant de pièces détachées utilise environ 40 000 morceaux de métal par année. Le coût annuel de stockage représente 20% du prix d'achat. Le coût de commande est de 24 \$. Le prix d'achat est de 3 \$.
- Déterminez :
 - La quantité économique à commander.
 - Le coût total annuel de gestion des stocks lié à cette quantité.

Le service d'entretien d'une usine consomme près de 816 caisses de nettoyeur par an. Le coût de commande est de 12\$ et le coût de stockage est de 4\$. Une liste de prix est soumise par le fournisseur.

Quantité commandée	prix par caisse
0< Q < 50 Caisses	20 \$
[50-80[Caisses	18 \$
[80-100[Caisses	17 \$
Q >= 100 Caisses	16 \$

Déterminez la meilleure politique d'achats selon le total des coûts.